

EVALI: E-Cigarette or Vaping-Associated Lung Injury

Lena Lebada, PharmD Candidate 2026

Loma Linda University School of Pharmacy

Greg Savitt, PharmD Candidate 2025

University of the Pacific, Thomas J. Long School of Pharmacy

Managed Care APPE Rotation

Confidential and Proprietary Information

Objectives

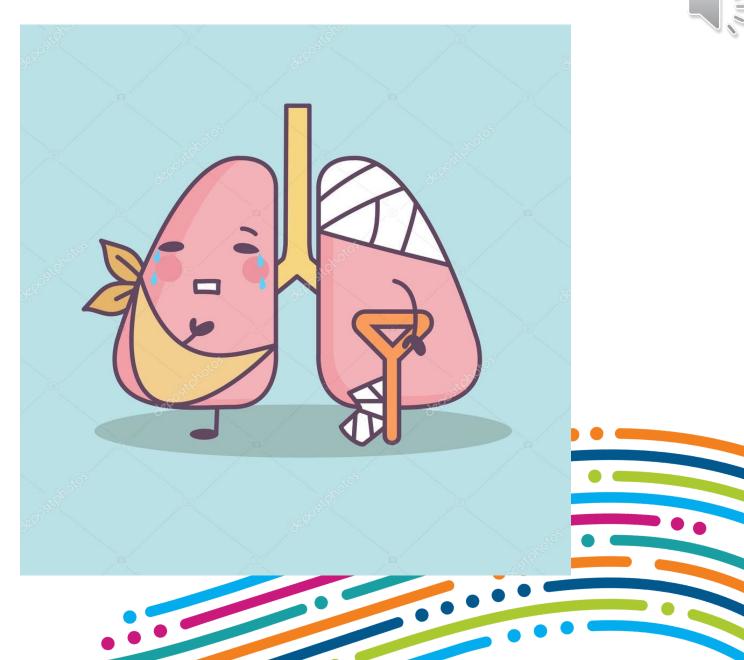
Define EVALI

Epidemiology

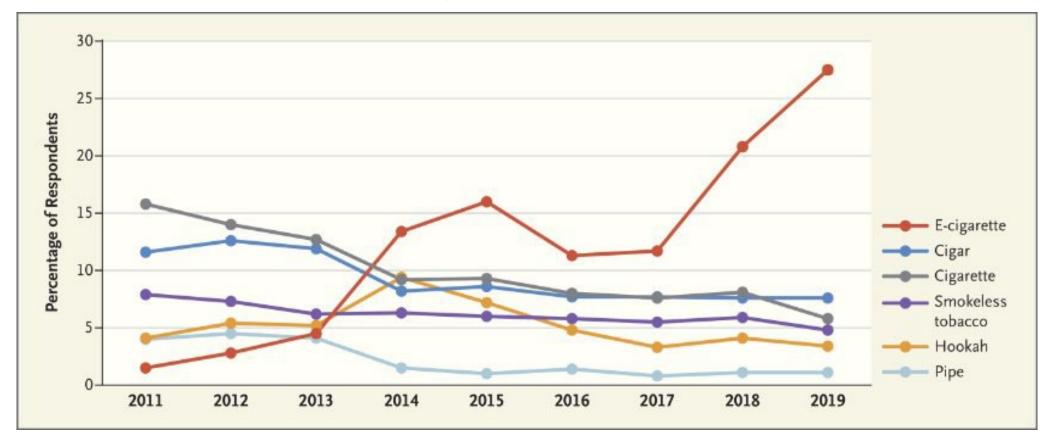
Recognize key signs and symptoms

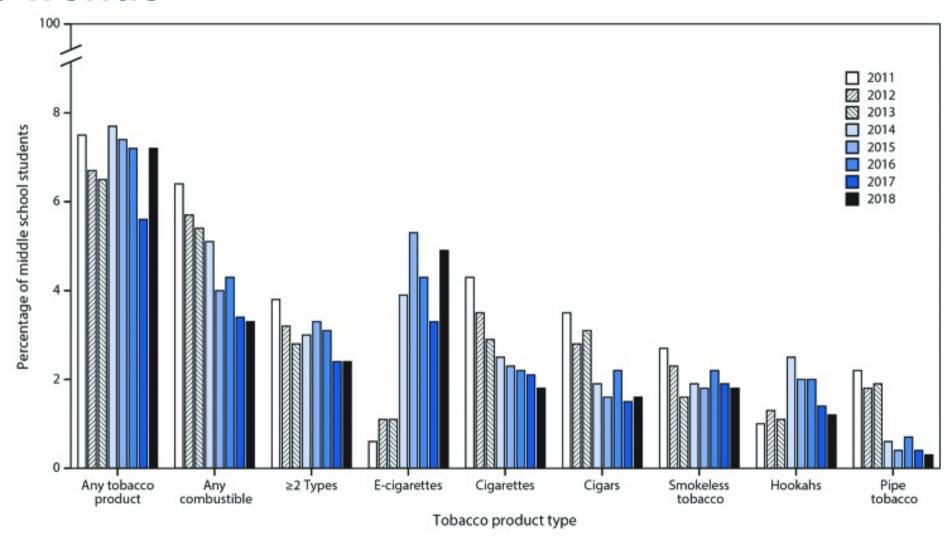
Discuss diagnosis and management

Familiarize with key updates and how to prevent EVALI


Background

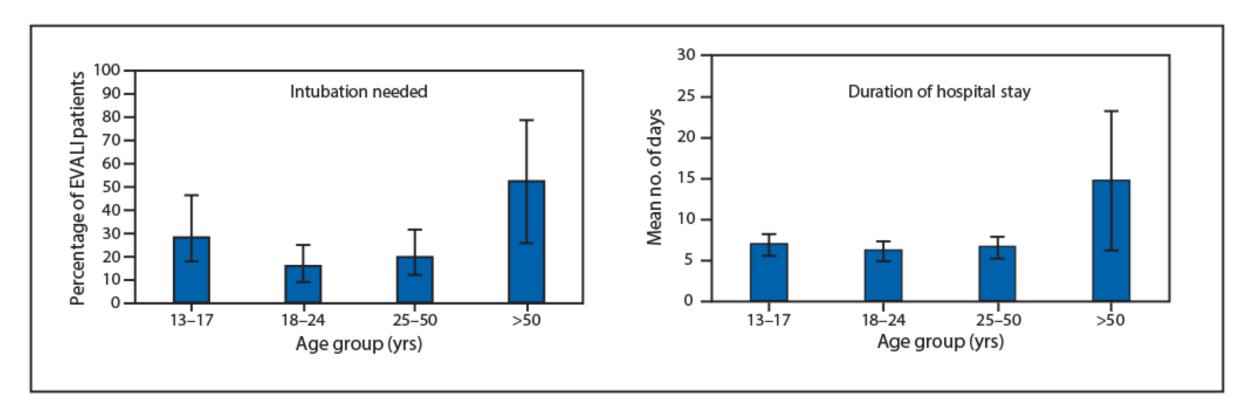
What is EVALI?


- EVALI: E-cigarette or Vaping-**Associated Lung Injury**
- Identified in 2019 following a cluster of cases linked to the use of e-cigarettes and vaping products (CDC)
- Characterized by lung inflammation


Epidemiology

- Over 2,800 cases and 68 deaths reported in the U.S.
- Predominately affects adolescent and young adults

Case Trends



CDC 2019 EVALI Statistics:

Percentage of persons needing intubation (N = 338) and hospitalization (N = 242) among patients with e-cigarette, or vaping, product use associated lung injury (EVALI), by age of patient — United States, February 1–October 3, 2019*

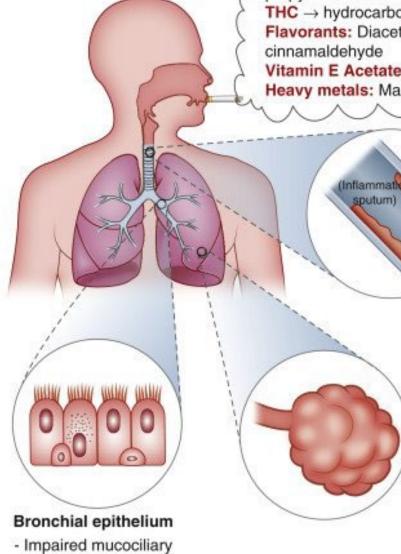
Development of EVALI

Patient uses ecigarette or vapes, open with THC or Vitamin E acetate

Lung inflammation begins from chemical exposure

Symptoms like cough, SOB, nausea, and fever appear

Patient gradually recovers over weeks with follow-up care


and treated with oxygen, steroids and stopping vaping

Symptoms worsen, leading to ER or clinic visit

Pathophysiology

clearance

- Increased cytokines, and

Impaired response to infections

oxidative stress

Vape pen aerosol

Propylene glycol → acrolein, formaldehyde, propylene oxide

THC → hydrocarbons, volatile organic compounds

Flavorants: Diacetyl, 2,3-Pentanedione,

cinnamaldehyde

Vitamin E Acetate → disruption of surfactant function

Heavy metals: Manganese, zinc

sputum)

Airways

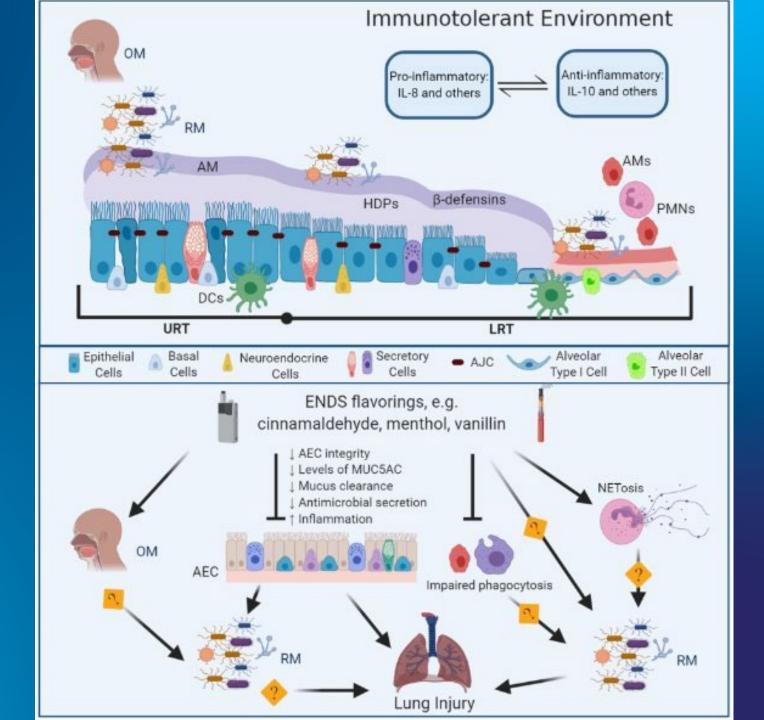
- Increased airway resistance
- Airway inflammation hyperreactivity

Alveolus

- Lipid laden alveolar macrophages
- Parenchymal changes consistent with COPD
- Increased neutrophil elastase and matrix metalloproteases
- Disrupted surfactant function

How vaping works?

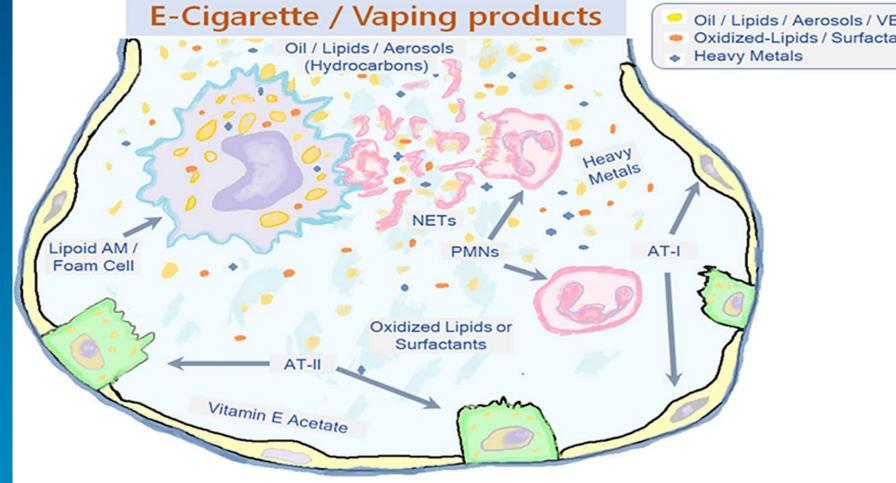
- Direct chemical injury happens from inhaled toxins causing disrupted lung surfactant and cell integrity
- Alveolar permeability
- Fluid, proteins and immune cells leak into alveoli
- May trigger cytokine release IL-6, IL-8, TNFalpha, worsening the inflammation
- Can mimic or progress to ARDS (Acute Respiratory Distress Syndrome)



Lipid-Laden Macrophages:

- Vitamin E acetate and oils are poorly cleared by the lung
- Macrophages engulf these lipids, forming "foamy" macrophages
- •These are key markers in bronchoalveolar lavage fluid (BAL)
- May contribute to oxidative stress and impaired microphage function

Mechanism of e-liquid flavorings



Pathophysiology

THC containing counterfeit ENDS cartridges

ALVEOL

Immune Response Shift - EVALI

- High neutrophil counts CD163 (-)
 M1 macrophages proinflammatory
- Increase in inflammatory markers:
 - □ IL-6, IL-8
 - \circ TNF- α
 - 。 CCL2
 - Serum Amyloid A

What are IL and TNF markers and how do they work?

- IL-6: Interleukin-6 is a pro-inflammatory cytokine
 - Mediates acute phase response
 - Fever
 - Stimulates immune response
 - Produced by T cells, macrophage, other
- IL-8: Interleukin-8 Chemokine CXCL8
 - Attracts neutrophils to sites of infection/inflammation
 - Secreted by macrophages, epithelial cells, airway smooth muscle cells
- TNF-alpha: Tumor Necrosis Factor Alpha
 - Key mediator for systemic inflammation, fever, apoptic cell death
 - Macrophages, some T cells/mast cells

What are IL and TNF markers and how do they work?

- ELISA (Enzyme-Linked Immunosorbent Assay)
 - Most common for cytokine in blood
- Polymerase Chain Reaction (PCR)
 - Used for mRNA expression of cytokines in tissues
- Flow cytometry
 - Cytokine-producing cells using intracell staining
- Immunohistochemistry
 - localization
- Multiplex bead assays:
 - detects several cytokines at once

Role in EVALI?

- Elevated IL-6, IL-8, TNF-alpha indicate intense inflammation and immune activation
- It specifically attracts neutrophils to the lungs correlating with neutrophilic alveolitis seen in EVALI cases
- The IL-6 and TNF promote a cytokine storm and alveolar damage
- They recruit inflammatory cells and lead to lung tissue injury
- Amplify immune response -> more damage

Triggers for EVALI?

Vitamin E

- Used as a thickening agent in vape cartridges
- Disrupts lung surfactant
- Triggers inflammatory response

Other additives:

- THC: can be counterfeit cartridges
- MCT: medium chain triglycerides
- Propylene glycol
- Flavorings (toxic when vaporized)

How long does it take to develop EVALI?

- Most cases: few days to a few weeks of frequent use
- First exposure: some cases develop after a few uses of high-risk products (THC cartridges with vitamin E acetate)
- Chronic users: some developed after months or years of regular use
- There is no amount of use that is deemed "safe", risk depends on product content

Timeline for discovery of EVALI

2019

First cluster of lung injury cases reported, CDC investigation is initiated

October 2019

Vitamin E acetate identified as key chemical culprit in lung injury

November 2019

Outbreak peaks: over 2,000 cases and increasing, CDC issues national health alerts

January 21st 2020

2,711 cases of hospitalized EVALI or deaths were reported by all 50 states, District of Columbia, and 2 U.S territories

•60 deaths had been confirmed

2021-2022

Focus shifted to long-term effects, youth vaping, and lung recover research

2023-2024 -> present

Continued prevention efforts, regulation and small isolated cases, most information has been archived on CDC website

Rise of E-cigarettes and Vapes:

- Early E-cigarettes invented in China (early 2000's)
- Designed as a "smokeless" nicotine delivery system
- Mid-2000's, early brands marketed as safer alternative to smoking

- Large brand name JUUL Labs launches JUUL in 2015 with a sleek USBlike design (appealing to youth, discreet)
- Nicotine salt technology with flavored pods (mango, mint)
- Social media aggressive marketing and influence campaigns, youth friendly imagery and flavors

- E-cigarette use among high schoolers from 1.5% in 2011 to 27% in 2019
- The further restrict FDA flavored pods and advertising
- JUUL removes certain flavors

EVALI Diagnosis and Symptoms

ICU Admission Criteria

- Severe hypoxia (SpO₂ < 90%)
- Tachypnea, altered mental status
- Hemodynamic instability
- Multisystem symptoms

(GI + respiratory + fever)

Imaging and Diagnosis

- CT showed ground-glass opacities pleural effusions
- BAL cytology: lipid-laden macrophages
- Infectious disease workup negative
- Diagnosis: confirmed EVALI per CDC definition

Clinical Presentation

Cough, shortness of breath, chest tightness

Nausea, vomiting, diarrhea

Fever, fatigue, malaise

Commonly mimics pneumonia

CDC Diagnostic Criteria

History of vaping/ecigarette use within 90 days of symptom onset Pulmonary infiltrates upon imaging

Negative infectious workup

No more plausible alternative diagnosis

26

E-Cig Use Associated with Immune Response

- High neutrophil counts, CD163 (+)
 M2 macrophages involved in tissue repair, anti- inflammation
- Minimal inflammation similar to healthy controls

Pharmacologic Interventions

- Systemic corticosteroids (e.g., prednisone or methylprednisolone)
 - IV preferred for hospitalized patients
 - IV prednisone 60 mg Q6H
 - Oral taper post-discharge
- Empiric antibiotics if bacterial infection can't be excluded
- Supportive medications:
 - Antiemetics
 - Antipyretics
 - Bronchodilators (esp. with asthma history)

Case Study: HG

- 18-year-old male soldier, history of asthma
- Presents with fever, cough, chest pain
- Initial diagnosis: community-acquired pneumonia
- Symptoms worsened despite treatment

EVALI Prevention

Vaping Cessation

- Strong recommendation for cessation of all vaping products
- Education on risks (Vitamin E acetate, THC additives)
 - Behavioral counseling
 - Military tobacco cessation programs
 - Follow-up support

Recovery

- Improvement typically within 4-7 days of steroid therapy
- Some symptoms persistent:
 - Chest discomfort with activity
 - General weakness and fatigue
- Follow-up imaging resolves in around 3 weeks after therapy.

Prevention Strategies

Expand access to vaping cessation programs

 Regulate ingredients and labeling in vaping products

 Increase awareness for youth and servicemembers

Unanswered Questions

 Is there genetic susceptibility? Does environment affect EVALI risk?

• Is there a reliable diagnostic biomarker?

 How do you prevent minors from accessing vapes?

References

- K. Werner, Ph.D, A. (2020). Hospitalizations and deaths associated with Evali | New England Journal of Medicine. The New England Journal of Medicine. https://www.nejm.org/doi/full/10.1056/NEJMoa1915314
- Centers for Disease Control and Prevention. (2019, October 17). *Update: Interim guidance for health care providers evaluating and caring for patients with suspected e-cigarette, or vaping, product use associated lung injury United States, October 2019*. Centers for Disease Control and Prevention. https://www.cdc.gov/mmwr/volumes/68/wr/mm6841e3.htm
- Gentzke AS, Creamer M, Cullen KA, Ambrose BK, Willis G, Jamal A, King BA. Vital Signs: Tobacco Product Use Among Middle and High School Students United States, 2011-2018. MMWR Morb Mortal Wkly Rep. 2019 Feb 15;68(6):157-164. doi: 10.15585/mmwr.mm6806e1. PMID: 30763302; PMCID: PMC6375658.
- Cullen KA, Gentzke AS, Sawdey MD, Chang JT, Anic GM, Wang TW, Creamer MR, Jamal A, Ambrose BK, King BA. e-Cigarette Use Among Youth in the United States, 2019. JAMA. 2019 Dec 3;322(21):2095-2103. doi: 10.1001/jama.2019.18387. PMID: 31688912; PMCID: PMC6865299.
- King, B. A., Jones, C. M., Baldwin, G. T., & Briss, P. A. (2020). The EVALI and Youth Vaping Epidemics Implications for Public Health. *New England Journal of Medicine*, 382(8). https://doi.org/10.1056/nejmp1916171
- CDC. (2020, February 25). *Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products*. Archive.cdc.gov. https://archive.cdc.gov/#/details?url=https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
- American Lung Association. (2023). Lung Health & Diseases | American Lung Association. Www.lung.org. https://www.lung.org/lung-health-diseases/lung-disease-lookup/evali
- Blount, B. C., Karwowski, M. P., Shields, P. G., Morel-Espinosa, M., Valentin-Blasini, L., Gardner, M., Braselton, M., Brosius, C. R., Caron, K. T., Chambers, D., Corstvet, J., Cowan, E., De Jesús, V. R., Espinosa, P., Fernandez, C., Holder, C., Kuklenyik, Z., Kusovschi, J. D., Newman, C., & Reis, G. B. (2019). Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. *New England Journal of Medicine*, 382(8). https://doi.org/10.1056/nejmoa1916433

Thank You.

