

Difficult-to-Treat and Severe Asthma

Tiandria Wilkins, Pharm D Candidate 2023

University of South Florida

Objectives

Define difficult-to-treat and severe asthma

Discuss epidemiology and pathophysiology of asthma

Describe the nation's financial cost on managing asthma

4

Discuss nonpharmacological and pharmacological treatment for asthma 5

Discuss therapeutic strategies for the treatment of difficultto-treat and severe asthma

Difficult-to-treat asthma is defined as asthma that is uncontrolled despite prescribing of medium or high dose ICS-LABA treatment to maintain good symptom control and reduce exacerbations

Severe asthma is defined as asthma that is uncontrolled despite adherence with optimized high-dose ICS –LABA therapy and treatment of contributory factors or that worsens when high dose treatment is decreased

Epidemiology

Asthma affects more than 22 million people

• 6 million children

Deaths due to asthma has declined, although the increasing prevalence of the disease

2022 Gina Main Report - Global Initiative for Asthma. GINA. https://ginasthma.org/gina-reports/. Published July 3, 2022

Healthcare Utilization and Cost

Patients with severe asthma account for approximately 60% of costs High costs due to:

Medications

- Hospitalizations
- Physician visits
- Costs of oral steroid side effects

2022 Gina Main Report - Global Initiative for Asthma. GINA. https://ginasthma.org/gina-reports/. Published July 3, 2022.

Confidential and Proprietary Information

Pathophysiology

Airflow limitation caused by changes in the airway

- Bronchoconstriction- bronchial smooth muscle contraction
- Airway Edema- inflammation, mucus hypersecretion and the formation of inspissated mucus plugs
- Airway hyper responsiveness- exaggerated bronchoconstrictor response to a wide variety of stimuli
- Airway remodeling- thickening of the sub-basement membrane, subepithelial fibrosis, airway smooth muscle hypertrophy and hyperplasia, blood vessel proliferation and dilation

Pathophysiology

Immunohistopathologic features that causes inflammation:

- Neutrophils (especially in sudden-onset, fatal asthma exacerbations; occupational asthma, and patients who smoke)
- Eosinophils
- Lymphocytes
- Mast cell activation
- Epithelial cell injury

Key: GM-CSF, granulocyte-macrophage colony-stimulating factor; IgE, immunoglobulin E; IL-3, interleukin 3 (and similar); TNF-α, tumor necrosis factor-alpha

Section 2, definition, pathophysiology and pathogenesis of asthma, and ... https://www.ncbi.nlm.nih.gov/books/NBK7223/. Accessed July 13, 2022.

Assessment and Management of Difficult-to-Treat and Severe Asthma Primary-Care and/or Specialist Care

- Confirm diagnosis
- Look for contributing factors
- Optimize management
- Review response after 3-6 months

Specialist Care

- Investigate further and provide patient support
- Assess severe asthma phenotypes
- Consider other treatments
- Consider add-on biologic Type 2-targeted treatments

Diagnosis

Perform	Perform spirometry before and after bronchodilator
Check	Check full flow-volume curve to assess for upper airway obstruction
Provide	If spirometry is normal, provide patient with peak flow meter and diary
Consider	Consider bronchial provocation testing if patient is able to withhold bronchodilators`

2)

Factors Contributing to Symptoms and Exacerbations

Goals of Therapy

To achieve good symptom control To minimize future risk of

- Asthma-related mortality
- Exacerbations
- Persistent airflow limitation
- Side-effects of treatment

Non-Pharmacological Management

Smoking cessation	Physical exercise	Healthy diet	Weight loss
Mucus Clearance Strategies	Influenza Vaccine	Breathing Exercises	Allergen Avoidance

Pharmacological Treatment

Controller Therapy

• Medium or High-dose ICS

Reliever Therapy

- SABA
- ICS and LABA

Add-On Therapy

- Non-biologics (LABA, LAMA, Leukotriene modifiers)
- Biologics (Anti-IgE, Anti-IL5/5R, Anti-IL4R, Anti-TSLP)

Anti-IgE (omalizumab)

Anti-IL5 (mepolizumab, reslizumab)

Anti-IL5R (benralizumab)

Anti-IL4R (dupilumab)

Anti-TSLP (tezepelumab)

Xolair[®] (omalizumab)

Indication: patients 6 years old older with severe allergic asthma and a positive skin test or in vitro reactivity to a perennial aeroallergen

Dosing: 75 to 375 mg subcutaneous injection every 2 or 4 weeks

Mechanism of Action: inhibits the binding of IgE to the high-affinity IgE receptor (FceRI) on the surface of mast cells, basophils, and dendritic cells, resulting in FceRI down-regulation on these cells

Side Effects: arthralgia, general pain, fatigue, dizziness, fracture, pruritus, dermatitis, and earache

Nucala [®] (mepolizumab)

Indication: patients 6 years and older with severe asthma and with an eosinophilic phenotype

Dosing:

- adults and adolescents 12 years and older- 100 mg subcutaneous injection administered once every 4 weeks
- pediatric patients 6 to 11 years- 40 mg subcutaneous injection administered once every 4 weeks

Mechanism of Action: IL-5 antagonist (IgG1 kappa) inhibiting the bioactivity of IL-5 by blocking its binding to the alpha chain of the IL-5 receptor complex expressed on the eosinophil cell surface

Side Effects: headache, injection site reaction, back pain, and fatigue

Cinqair [®] (reslizumab)

Indication: patients 18 years and older with severe asthma and an eosinophilic phenotype

Dosing: 3 mg/kg intravenous infusion once every 4 weeks

Mechanism of Action: binds to IL-5, while inhibiting the bioactivity of IL-5 by blocking its binding to the alpha chain of the IL-5 receptor complex expressed on the eosinophil surface

Side Effects: oropharyngeal pain and malignancy

Fasenra [®] (benralizumab)

Indication: patients 12 years and older with severe asthma and eosinophilic phenotype

Dosing: 30mg subcutaneous injection administered once every 4 weeks for the first 3 doses, and then once every 8 weeks

Mechanism of Action: monoclonal antibody (IgG1, kappa) that binds to the alpha subunit of the human interleukin-5 receptor (IL-5Rα) leading to apoptosis of eosinophils and basophils

Side Effects: headache and pharyngitis

Dupixent [®] (dupilumab)

Indication: patients 6 years and older with moderate-to-severe asthma characterized by an eosinophilic phenotype or with oral corticosteroid dependent asthma

Dosing:

- adults and adolescents 12 years and older- initial dose of 400 mg then 200 mg given every other week or initial dose of 600 mg then 300 mg given every other week
- pediatric patients 6 to 11 years- 100 to 200mg every other week or 300 mg every four weeks

Mechanism of Action: monoclonal IgG4 antibody that inhibits interleukin-4 (IL-4) and interleukin-13 (IL-13) signaling by binding to the IL-4Rα subunit

Side Effects: injection site reaction, oropharyngeal pain, and eosinophilia

Tespire [®] (tezepelumab)

Indication: adult and pediatric patients 12 years and older with severe asthma

Dosing: 210 mg subcutaneous injection administered once every 4 weeks

Mechanism of Action: thymic stromal lymphopoietin (TSLP) blocker monoclonal antibody $IgG2\lambda$ that binds to human TSLP and blocks its interaction with the heterodimeric TSLP receptor

Side Effects: pharyngitis, arthralgia, and back pain

Comparison of Biologics

Agent	Route of Administration	Cost	Population	Phenotype
omalizumab	subcutaneous	1,295 per injection	Children (6) and adults	N/A
mepolizumab	subcutaneous	3,272 per injection	Children (6) and adults	eosinophilic phenotype
reslizumab	intravenous	1,071 per injection	Adults only	eosinophilic phenotype
benralizumab	subcutaneous	5.197 per injection	Children (12) and adults	eosinophilic phenotype
dupilumab	subcutaneous	3,573 per injection	Children (6) and adults	eosinophilic phenotype or OCS dependent
tezepelumab	subcutaneous	3,633 per injection	Children (12) and adults	N/A

Monitoring

Symptom control

Type 2 comorbidities

Treatment intensity

Continue to optimize treatment

Review patient every 3-6 months

Address patient concerns, assess risk factors, review response

Conclusion

- Difficult-to-treat and severe asthma affects approximately 20% of patients with asthma.
- It is very important to properly assess the patients to provide adequate management.
- There are many add on therapy options that can be used to help aid the patient in asthma control.
- Patient's therapeutic regimen should always be assessed and monitored.

References

- 2022 Gina Main Report Global Initiative for Asthma. GINA. https://ginasthma.org/gina-reports/. Published July 3, 2022. Accessed July 13, 2022.
- National Asthma Education and Prevention Program. Expert panel report 3: guidelines for the diagnosis and management of asthma: full report 2007. Available at http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf
- Data, statistics, and surveillance. Centers for Disease Control and Prevention. https://www.cdc.gov/asthma/asthmadata.htm. Published May 25, 2022. Accessed July 9, 2022.
- Section 2, definition, pathophysiology and pathogenesis of asthma, and ... https://www.ncbi.nlm.nih.gov/books/NBK7223/. Accessed July 13, 2022.
- Xolair [package insert]. South San Francisco, CA : Genentech, Inc. Revised July 2021.
- Nucala [package insert]. Philadelphia, PA : GlaxoSmithKline. Revised January 2022.
- Cinqair [package insert]. West Chester, PA : Teva Respiratory, LLC. Revised February 2020.
- Fasenra [package insert]. Wilmington, DE : AstraZeneca Pharmaceuticals LP. Revised February 2021.
- Dupixent [package insert]. Tarrytown, NY : Regeneron Pharmaceuticals, Inc. Revised June 2022.
- Tespire [package insert]. Thousand Oaks, CA : Amgen Inc. Revised December 2021.
- Xolair prices, Coupons & patient assistance programs. Drugs.com. https://www.drugs.com/price-guide/xolair. Accessed July 27, 2022.
- Mepolizumab prices, Coupons & savings tips goodrx. https://www.goodrx.com/mepolizumab. Accessed July 27, 2022.
- Cinqair prices, Coupons & patient assistance programs. Drugs.com. https://www.drugs.com/price-guide/cinqair. Accessed July 27, 2022.
- FASENRA prices, Coupons & patient assistance programs. Drugs.com. https://www.drugs.com/price-guide/fasenra. Accessed July 27, 2022.
- Dupixent prices, Coupons & patient assistance programs. Drugs.com. https://www.drugs.com/price-guide/dupixent. Accessed July 27, 2022.
- Paying for tezspire | TEZSPIRE[™] (tezepelumab-ekko) subcutaneous ... https://www.tezspire.com/cost-affordability.html. Accessed July 27, 2022.

(»)))

Thank you

))

