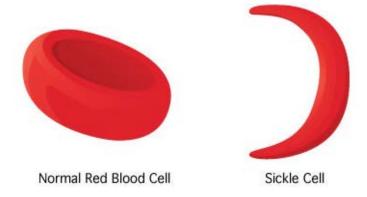


Sickle Cell Disease

By Ajmin Shahmirzayan Loma Linda University, School of Pharmacy Class of 2020

Objectives


- Define Sickle Cell disease
- 2. Discuss diagnosis, risk factors and pathogenesis
- 3. Review different forms of the disease
- 4. Review management/treatment
- 5. Discuss future gene therapy

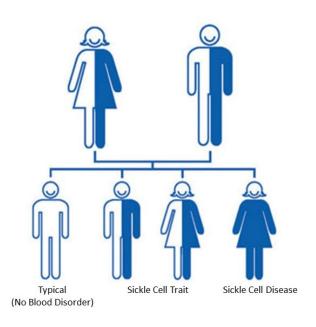
Definition

According to the National Heart, Lung and Blood Institute, sickle cell disease (SCD) is defined as a group of inherited red blood cell disorders in which there are abnormal protein in red blood cells.

Diagnosis

 Typically diagnosed at birth via "universal newborn screening" which is done by isoelectric focusing (IEF), hemoglobin electrophoresis (HbEp), etc...

Risk Factors



- Living in high prevalence area for SCD (Africa/Malaria)
- Family History of SCD (genetics)

Pathogenesis

Different Forms of Sickle Cell Disease

- Sickle Cell Trait
- HbSS (most common & severe)
- HbSC (less severe)
- HbSβ⁰ -Thalassemia (severe)

Exhibit 1a. Typical Laboratory Findings in Sickle Cell Disease

Genotype	Hb* (g/dL)†	HbS (%)	HbA (%)	HbA2 (%)	HbF (%)	HbC (%)
SS	6–9	>90	0	<3.5	<10	0
Sβ ⁰ -thalassemia	7–9	>80	0	>3.5	<20	0
Sβ+-thalassemia	9–12	>60	10–30	>3.5	<20	0
SC	9–14	50	0	<3.5	≤1.0	45

^{*} Definitions for abbreviations are as follows: Hb = hemoglobin; HbS = sickle hemoglobin; HbA = normal adult hemoglobin; HbA₂ = minor variant of adult hemoglobin; HbF = fetal hemoglobin; HbC = hemoglobin variant that causes manifestations of SCD when paired with HbS

NHLBI

[†] The hemoglobin values in this exhibit apply in the absence of a blood transfusion in the last 4 months, are not absolute, and are applicable to adults and children only (not newborns).

Epidemiology

- Most common for individuals from Africa/African descent, Middle East, India, Mediterranean countries, Caribbean, and parts of South/Central America.
- 15 million Africans affected by SCD; 100,000 in the United States;
 12,500 in the UK
- 1 out of every 365 African Americans born have sickle cell disease.

Mortality

- Children and adults with homozygous sickle cell anemia (HbSS) had a median age of death of 42 years for males and 48 years for females
- HbSC median age of death was 60 years for males and 68 years for females

18% of deaths were due to organ failure (primarily renal failure)

mortality

Cost

- Study from University of Florida looked at 11,821 patients (0-96 years) and assessed cost burden
- Using national prevalence data, SCD has a cost burden of \$2.98 billion per year in the US
- Of that, 57% are inpatient costs, 38% are outpatient, and 5% are patient out of pocket costs

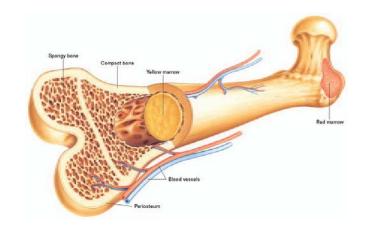
Social and Behavioral Implications

- Children ages 1.5 to 5 years of age with SCD were studied
- Compared to placebo, higher levels of:
 - o Depression
 - Anxiety
 - Aggressive behavior
 - Internalizing symptoms

Studies have also shown adults have coping issues as well

Medical complications of abnormal RBC

- Vasco-occlusive crisis
- Anemia
- Splenic Sequestration
- Acute Chest Syndrome
- Infection
- Stroke


Management/Treatment

Cure

- Bone marrow transplantation
- Difficult due to cost, donor match, and surgery risk

Sickle Cell Guidelines

- 2014 American Society of Hematology (adapted from National Heart Lung Blood Institute)
- 2009 American Society of Pediatric Hematology/Oncology
- 2016 British Society for Hematology
- 2008 Canadian College of Medical Geneticists Prenatal Diagnosis

Hydroxyurea in Adults with SCD

- Indicated for adults with 3 or more moderate-severe pain crises in 1 year
- Severe or recurrent acute chest syndrome
- Chronic anemia

Hydroxyurea

- MOA: Increases fetal hemoglobin (HbF) and reduces vasoocclusion
- Side effects: increased LFTS, uric acid, BUN, SCR, teratogenic (contraception), BBW: myelosuppression.
- Monitor ANC levels every 2-4 weeks initially, then 2-3 months (Hold if ANC< 2,000/mm³ or platelets <80,0000/mm³)
- Folic supplementation

Different Formulations of Hydroxyurea

er	lVC	lv	e,
-1	_	1000	

	Generic Hydroxyurea	Droxia [®]	Siklos®
Indication	SCD (standard of care)	SCD	SCD
Age	9 months*	Adults only	2 years and older
Dose	10-15 mg/kg/day a single dose. Increase by 5 mg/kg every 4-6 weeks	Initial 15 mg/kg/day. Increase dose by 5 mg/kg/day every 12 weeks	Initial 20 mg/kg/day. Increase dose by 5 mg/kg/day every 8 weeks
Max Dose	35 mg/kg/day (SCD)	35 mg/kg/day	35 mg/kg/day
Dose Adjust	CrCl< 60 ml/min	CrCl< 60 ml/min	CrCl< 60 ml/min

*Recommended for ages 9 months to adolescent regardless of disease severity (*NHLBI)

- Endari® (L-glutamine Powder) Approved 2017 by FDA
- MOA: improves the redox potential in sickle RBC by increasing the availability of reduced glutathione.
- Side effects: constipation, abdominal pain, nausea and headache
- Dosage:10 to 30 grams given BID per body weight
- Reduces acute complications of SCD in adults/pediatrics (5 years+) such as pain crises, acute chest syndrome, and hospitalization
- Hepatic/renal monitoring

- Oxbryta® (voxelotor)
- MOA: inhibits hemoglobin S polymerization, the central abnormality in SCD, which increases affinity/stabilizes the oxygenated hemoglobin state and improves RBC deformity, sickling, and whole blood viscosity
- Side effects: headache, diarrhea, and fatigue
- Dosage: 1500 mg orally once daily (Hepatic dose adjusted)
- Indicated for SCD patients 12 years of age or older
- May increase hemoglobin levels and reduce hemolysis. Use chromatography for precise measurement
- Can be given with or without hydroxyurea

- Adakveo® (crizanlizumab-tmca) FDA approved on November 15, 2019
- MOA: inhibits P-selectin glycoprotein ligand 1 (adhesion substance) and prevents sickled red blood cells, platelets, endothelial cells, and leukocytes from sticking to each other
- Side effects: infusion related reactions, nausea, back pain, joint pain, and fever
- Dosage: 5mg/kg @ 100 mg/10 ml injection (dosage form)
- Administer via 30 minutes infusion at Week 0, Week 2, and every 4 weeks thereafter.
- For SCD patients 16 years of age or older

Adakveo® (crizanlizumab-tmca) cont.

- Lowers rates of vaso-occlusive crisis resulting in better management of symptoms including pain, organ damage, and hospitalization
- Studies showed that patients receiving Adakveo had a median annual hospitalization rate of 1.63 visits compared to the placebo of 2.98 median annual visits (p-value= 0.01)
- Can be used with or without hydroxyurea

Can interfere with platelet count in blood samples (falsely decreased platelet count)

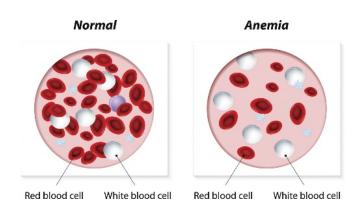
Supportive Care for Medical Complications

- Vasco-occlusive crisis (occlusion causing pain)
- Anemia
- Splenic Sequestration
- Acute Chest Syndrome
- Infection
- Stroke

Pain (Vaso-occlusive Crisis)

- Typically in a hospital setting
- Initiate analgesic therapy within 30-60 minutes
- For mild to moderate pain: NSAIDs
- Severe Pain: parenteral opioids
- Meperidine is commonly used due to long prescribing history but is not recommended due to CNS toxicity (dysphoria, irritable mood, and seizures)
- Parental morphine, hydromorphone, and fentanyl are recommended

Pain cont.



- Chronic Pain: long and short acting opioids
- Use of oral long acting or sustained release opioids is recommended for management of chronic pain
- Short acting opioids may be used for breakthrough pain

Acute Anemia

- Decline of 2 g/dL or more from baseline or less than
 6 g/dL when baseline in unknown
- For symptomatic acute cases of anemia:
 - Blood transfusion

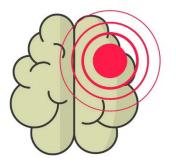
Acute Chest Syndrome

- Frequent cause of death for SCD patients aged 1 to 3 years
- Acute illness: fever and respiratory symptoms
- Pulmonary infiltrate
- Treatment:
 - Oxygen (if oxygen saturation is less than 90%)
 - Blood Transfusion (if a decrease in hemoglobin > 1 g/ml)
 - Broad Spectrum IV Antibiotics (cephalosporin + macrolide)
 - Pain control and spirometry

Infection

- Streptococcus pneumonia main culprit for death in children with SCD
- Susceptibly is due splenic malfunction with failure to make specific IgG antibodies
- New Vaccination Record: PCV13 before the age of 2 (2 doses 8 weeks apart)
- After completion of PCV13, give 2 doses of PPSV23 (1st dose 8 weeks after last dose of PCV13, and second dose at least 5 years after first dose of PPSV23)
- Meningococcal Vaccine age > 2 years (2 doses 8 weeks apart)
- One dose of Hib vaccine for ages > 5 years

Infection cont.

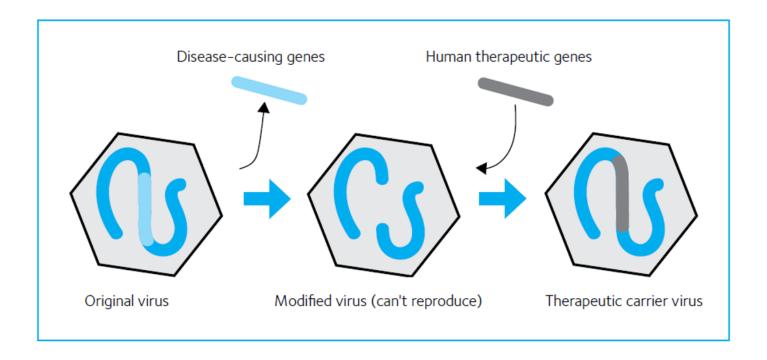

- Prophylactic Antibiotics
- Shown to prevent life threatening infections in children with SCD
- New born to 3 years: Penicillin VK 125 mg PO BID
- 3 to 5 years: Penicillin VK 250 mg PO BID
- After 5 years age, continuation of prophylactic penicillin based on clinical judgement.
- Consider withholding penicillin prophylaxis for patients with SCD HbSC and HbSβ+unless they have had splenectomy

Acute Stroke

- Typically presented with severe headache, altered level of consciousness, seizures, speech issues, and/or paralysis
- Treat with exchange transfusion
- If unable to transfuse, initiate hyrdoxyurea treatment

Acute Splenic Sequestration Complication

- Intrasplenic trapping of red blood cells causing rapid drop (2 g/dL) in hemoglobin with increased chance of hypoxic shock
- Leading cause of death in children with SCD (more common in SCD-SS)
- Evidence of increased erythropoiesis (elevated reticulocyte)
- Acutely enlarged spleen


Treatment of ASSC

- Treat with immediate red blood cell transfusion and IV fluid resuscitation
- Partial splenectomy has been recommended for children with recurrent ASSC (no RCT data)
- Splenectomy does not increase the risk of death or bacterial illness in patients with SCD-SS

The Future (Gene Therapy)

Gene Therapy (ongoing clinical trials)

- 2 general mechanisms of action:
 - Remove patients hematopoietic stem cells and replace the mutated gene with a healthy gene in hopes that when replaced will continue to produce healthy RBCs.
 - To genetically modify the stem cell to produce more fetal hemoglobin.
- 4 trials in Phase II (two are concluding in 2022)

Conclusion

- Sickle cell disease is rare, however it has both clinical complications and a cost burden. Therefore standard of care can help improve patient outcomes and decrease hospitalization.
- To improve quality of care and improve outcomes, a clinical pharmacy program is being developed to promote hydroxyurea use and improve medication adherence

References

- Agrawal, Rohit Kumar et al. "Hydroxyurea in sickle cell disease: drug review." *Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion* vol. 30,2 (2014): 91-6. doi:10.1007/s12288-013-0261-4
- Anie, K.A. & Green, J. (2002). Psychological therapies for sickle cell disease and pain (Cochrane review). In: The Cochrane Library, Vol. 3, Update Software, CD001916, Oxford
- Bender MA, Douthitt Seibel G. Sickle Cell Disease GeneReviews 2017 Aug 17.
- Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017 Apr 20; 376(16):1561-1573
- "Complications and Treatments of Sickle Cell Disease." Centers for Disease Control and Prevention, 21 October 2019. www.cdc.gov/ncbddd/sicklecell/treatments.html
- "Data & Statistics on Sickle Cell Disease." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 21
 Oct. 2019. www.cdc.gov/ncbddd/sicklecell/data.html
- Hutchaleelaha, Athiwat et al. "Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease." British journal of clinical pharmacology vol. 85,6 (2019): 1290-1302. doi:10.1111/bcp.13896
- Kauf, T.L., Coates, T.D., Huazhi, L., Mody-Patel, N. and Hartzema, A.G. (2009), The cost of health care for children and adults with sickle cell disease. Am. J. Hematol., 84: 323-327. doi:10.1002/ajh.21408
- National Institute of Health, National Heart Lung and Blood Institute, Division of Blood Diseases and Resources. Evidence-based management of sickle cell disease. 2014
- Nevitt, Sarah J et al. "Hydroxyurea (hydroxycarbamide) for sickle cell disease." *The Cochrane database of systematic reviews* vol. 4,4 CD002202. 20 Apr. 2017, doi:10.1002/14651858.CD002202.pub2
- Riley, Tanya R, and Treavor T Riley. "Profile of crizanlizumab and its potential in the prevention of pain crises in sickle cell disease: evidence to date." *Journal of blood medicine* vol. 10 307-311. 30 Aug. 2019, doi:10.2147/JBM.S191423
- Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017 Jul 15; 390 (10091):311-323

Questions

